REPORT

Al-assisted engineering:
Q4 impact report

Al-Assisted Engineering: Q4 Trends
Report

Laura Tacho, CTO at DX

The current impact of Al

Over the past year, we've had a front-row seat to one of the most significant transformations in software development: the
adoption of Al.

At DX, we help organizations measure developer productivity through a combination of qualitative and quantitative data.
This unigue vantage point has allowed us to see both patterns in the data and the real stories playing out on the ground.

To capture a clear picture of Al's current impact on our industry, this report draws on actual Al coding assistant usage data
from over 135,000 developers across 435 companiest. We'll look at high-level trends and also dig into some deeper
analyses, providing some clarity with a moment-in-time snapshot of what the current data shows.

Each analysis in this report reflects the subset of developers and companies with available data for that specific metric.

How to interpret these numbers

While industry averages can show broad trends, it's important to highlight that there is no "average experience”
when it comes to Al impact. Al is an accelerant that is helping some companies accelerate and improve quality,
while other companies are speeding up as quality and maintainability degrade.

There are many contextual factors that influence Al impact. At DX, we're placing more emphasis on longitudinal
trends and cohort comparisons, rather than taking an industry average as an overall indication of what to expect
across the board. The high adoption of Al tools makes it difficult to compare Al users with non-Al users across the
iIndustry, as the sample size for non-users gets smaller and smaller as weeks go by. Instead, many companies are

opting to compare regular users (daily and weekly) with light users (monthly) to understand how increased usage
Impacts productivity.

1 See the Methodologies section for more information on our data samples.

Industry-wide Al adoption is over 90%

The use of Al coding assistants is now ubiquitous in engineering organizations, with overall adoption reaching 91%. Other
industry analyses independent from DX, such as the 2025 DORA report, also stated an adoption rate of 90%. It’s clear that

using Al coding assistants is no longer an experiment — it's a core part of engineering strategy.

But adoption doesn't equal impact. Companies are struggling more than ever to understand how their Al investments are
impacting their engineering performance.

To ground the conversation, we'll start with a fundamental question: how is Al changing the way that developers get their
work done right now?

Industry-wide adoption of Al coding tools
Sample of 85,350 developers at 435 companies

B Al Users: 90.2% Non-Users: 1.5% Unknown/No Data: 8.3%

90.2%

https://dora.dev/research/2025/dora-report/

Developers save an average of 3.6 hours per week with Al coding tools

One of the high-level signals we track at DX is self-reported time savings.? This gives an early indication of Al usefulness,
and is a leading indicator for downstream impact, like faster time to market or more time for innovation.

Developers reported saving an average of 3.6 hours per week thanks to Al coding tools. Daily users saved the most time,
with 4.1 hours, followed by weekly users at 3.5 hours a week.

Interestingly, though Al tool adoption has soared in the last six months, time savings per developer has hovered around the
4 hour mark. We haven't seen time savings rise as industry-wide adoption has increased.

One hypothesis is that, while developers may successfully use Al tools regularly for daily tasks, they're still hitting
significant barriers at the team and system level. Another hypothesis is that developers have a harder time comparing their
time savings to pre-Al levels, since many users have been using Al tools in their daily work for 6 months or more. However,
it's important to note that overall time savings have nearly doubled since Q4 2024, when the average was closer to 2 hours.

We also see significant time savings reported from users without system-level usage data from their organization's Al
tools, suggesting that Al use is pervasive, and confirming the high adoption rates mentioned in the previous section.

Weekly Al time savings by Al usage level

Sample of 58,330 developers across 352 companies

B Average weekly Al-driven time savings, in hours

3.2
hrs

0.6
hrs

Daily Weekly Monthly Never Unknown/No data

Al Usage level

2 See the Methodologies section for more on self-reported time savings.

22% of code is Al-authored

The percentage of Al-authored code is one of the most talked-about metrics in the industry right now—and also one of the
hardest to measure accurately. Many of the figures in headlines aren't grounded in rigorous measurement. While we at DX
are developing more sophisticated telemetry-based tools with our customers, we've also introduced a self-reported
measure to establish a consistent baseline.

In our definition, "Al-authored code" is code generated by Al that was merged without major human rewrites or
modifications. Using self-reported data aligned to this definition, data from Q4 2025 shows that 22% of code is Al-
authored, looking at a sample of 266 companies.

Interestingly, the percentage of Al-authored code doesn't change much based on Al usage intensity. Daily users of Al
coding assistants report that 24% of their merged code is Al-generated, with monthly users reporting just over 20%.

The number provides an important reality check against vendor marketing claims. It also highlights a key point: while Al-
generated code does not tell the full story of impact, it can be a meaningful signal when tracked alongside other data
points.

Percent of merged code authored by Al, by Al usage level
Sample of 34,491 developers across 248 companies

B % of code that is Al-authored

20.2%

Daily Weekly Monthly Never Unknown/No Data

Al usage level

Daily Al users ship 60% more PRs than non-users

One of the most common questions we hear is whether Al adoption is actually helping developers ship more code.

Looking across more than 51,000 developers, there is a correlation between frequency of Al usage and pull request (PR)
throughput. Daily users of Al merge a median average of 2.3 PRs per week, followed by 1.8 PRs/week for weekly Al users,
and 1.5 PRs/week for monthly Al users. A small group of users who report they don't use Al at all, or they don’t have access,
ship a slightly lower 1.4 PRs/week.

This throughput gap between heavy and light Al users has remained steady since the previous quarter, where the median
value for PRs/week for daily Al users was 2.2, compared to 1.5 PRs/week for monthly Al users.

PR throughput, Al-authored code, and time savings are correlated with Al usage. Daily users of Al save more time coding,
merge more Al-authored code, and merge more PRs overall compared to developers who use Al less frequently. However,
it’s still possible that this increase in speed doesn’t lead to better business results. This scenario underscores the need for

comprehensive, continuous measurement beyond just coding habits.

Weekly PR throughput by Al usage level
Sample of 61,800 developers at 376 companies

B Median Weekly PR Throughput

15
1
0.5
O

Daily Weekly Monthly Never Unknown/No Data

Al Usage Level

Impact on quality is varied

To track changes in quality, we looked at the relationship between Al tool usage and three measures for quality:

e Change Failure Rate: the percentage of changes that result in degraded performance that must be immediately fixed
e Change Confidence: how confident a developer is that a change will not break in production
o Code Maintainabillity: how easy it is to understand and modify code.

While some organizations are seeing clear improvement to quality as Al usage increases, others are seeing serious

degradation. There can be multiple reasons for this, stemming from existing code hygiene practices, the availability of
formal training on the best use of Al, and the size, complexity, and domain-specificity of the codebase.

Al's impact on Change Failure Rate, in % points from pre-Al measurement

2%

more failures
~0

0%

-1%

fewer failures

-2%

-3%

For engineering leaders, these findings underscore that successful Al integration requires more than just tool deployment;
it demands thoughtful measurement, implementation strategies, and proper training to ensure that the promise of
iIncreased velocity doesn’t come at the expense of the code quality that underpins long-term software sustainability.

Interesting trends

Junior engineers use Al the most

Adoption is an important prerequisite for impact, with many companies focusing their Al strategies on rollout and
onboarding over the past 18 months. These efforts have paid off, with overall adoption reaching 90%. Still, it's important to
analyze adoption patterns by developer attributes to understand which groups may need additional enablement support.

Our data suggests that junior developers use Al more frequently than more senior developers. Patterns like this in your
own data can spark useful conversations. Are junior engineers more eager to experiment with new tools, or is it that Al
coding tools are better suited for smaller, well-defined tasks?

Al adoption by usage level and role seniority
Sample of 20,200 developers from 125 companies

B Daily+ W Weekly Monthly Never Unknown/No Data

% of developers

100%
7.6% 6.9% 8.0% 10.6%

%8 18.9%
1947 21.6%

21.4%

80%

60%

40%

20%

0%
Junior Mid-level Senior Staff+

Role Seniority

Big time-saving opportunities for senior and staff+ engineers

Time savings based on seniority level have levelled out since last quarter, with Staff+ engineers still saving the most time,

but by a smaller margin.

Since July of 2025, Staff+ engineers who use Al daily or more report saving 4.4 hours a week, and those using Al monthly

report a 3.3 hour time savings each week.

Given that Staff+ engineers have the lowest adoption levels out of the seniority bands, this represents a large opportunity

for acceleration.

Understanding the adoption barriers for more senior engineers—and remediating them—can unlock significant time
savings for an organization, especially as these engineers have wide scopes of influence and can apply Al in higher-
leverage ways, where the impact compounds more meaningfully.

Weekly Al time savings by Al usage level and role seniority
Sample of 20,000 developers

B Heavy W Moderate Light

Hours saved per week

4.4
4.3
4.1 4
4
3.9
3.7
3.6

| 3.4 s

3.3 58
3.1 3.1 3
2
O

Junior Mid-level Senior Staff+

A

Role Seniority

Traditional enterprises see higher adoption rates

While headlines often focus on big tech companies like Google, Meta, and Microsoft, our data reveals an interesting twist:
non-tech enterprises, particularly in regulated industries, are currently seeing higher Al adoption rates.

These organizations may move more slowly, but their rollouts tend to be deliberate and structured, with a strong emphasis

on enablement, training, and governance.

Across all companies and industries, we see evidence that this kind of structured enablement is a key indicator of Al
success. We cannot assume developers will simply "get it" with Al tools. Adoption requires a systematic, measurable
approach to rollout and support in order to maximize the impact of these tools.

Al adoption rates: big tech vs traditional enterprise
Sample comparing 12 traditional to 12 big tech enterprises

B Daily W Weekly Monthly Never Unknown/No Data

Al adoption rate

100%
8.6% 14.4%

22.6%
20.2%

80%

60%

40%

20%

0%
Big Tech Enterprise Traditional Enterprise

Enterprise Type

10

Smaller companies use Al more frequently

Eighty percent of developers at companies with fewer than 50 developers, and just over 70% of developers at companies
with 50-200 developers, are using Al at least weekly.

This is likely not a surprising pattern, as smaller organizations typically operate with more modern tech stacks and fewer
legacy systems, enabling faster adoption of Al tooling. Additionally, smaller companies often have lighter procurement
processes and fewer regulations, allowing developers to experiment with and integrate Al tools more quickly.

While smaller companies may be ahead of the adoption curve, larger companies have significant opportunities for
acceleration as they catch up.

Al adoption by usage level and engineering organization size
Sample of 20,200 developers from 125 companies

B Heavy B Moderate Light Never Unknown/No Data

2.6% 6.1% 8.8% 14% 8.5%
5.2%
3.8% 2
10.4% . | it 23.1%
17.3% 16.9% 20.2% -

Below 50 50-200 201-500 501-1000 1000+
Engineering Org Size

1

Enterprises lag in adoption, but are leading in Al-driven time savings

Right now there is a huge amount of opportunity for enterprises to accelerate software delivery with Al.

In our sample, Al users at enterprises with more than 1,000 developers saved more time per developer than their

counterparts in smaller organizations, regardless of Al usage level.

With substantial developer populations, the upside of increasing Al adoption compounds quickly. It’s important for these
companies to continue to analyze adoption trends based on developer attributes, to see what types of developers may

need more training and enablement.

For example, by focusing on enablement, Booking.com was able to increase their adoption from fewer than 10% of
developers to now having close to '70% of developers using Al tools regularly. Hear more about how they scaled adoption

across more than 3,000 devs here.

Weekly Al time savings (median) by Al usage level and engineering org size
Sample of 18,000 developers at 151 companies

B Daily B Weekly Monthly

4.5
4.2
4.0 4.0
3.9
3.8
3.5 3.5
3.4 3.4
- 2.9
‘ 2.7
|

Below 50 50-200 201-500 501-1000 1000+
Engineering Org Size

12

https://getdx.com/podcast/enterprise-wide-ai-tool-adoption/

“Shadow Al” can’t be ignhored, making acceptable use policies critical

Organizations should expect that developers use Al tools that they pay for out of their own pockets. This can happen for
several reasons: they may have existing habits with a tool like ChatGPT, prefer a different Al tool their organization has
approved, or they’re experimenting with tools outside of code authoring.

This so-called “shadow Al” has strong evidence in DX’s data. Users who have no system data from their organization’s
enterprise Al tools are still reporting weekly or daily usage, and they report time savings.

Weekly Al time savings by Al usage level

Sample of 58,330 developers across 352 companies

B Average hours/developer/week saved with Al

3.2
nrs
0.6
hrs
Daily Weekly Monthly Never Unknown/No data

Al Usage level

Acceptable use policies are critical to avoid security or license breaches. Shadow Al can introduce vulnerabilities if
sensitive code, personal data, or confidential information is entered into external Al tools without proper safeguards.
Policies should clarify what types of data are safe to use with which Al tools.

Organizations shouldn’t be too eager to squash experimentation, especially with new tools, but rather find the right way to
balance it with security and privacy requirements.

13

Newer Al-native tools outperform others

Looking across vendors, we see noticeable differences in outcomes. Even in side-by-side deployments, Al-native tools like
agentic IDEs are associated with higher throughput compared to older or less specialized solutions.

This doesn't mean older tools aren't delivering value. These newer tools are often entering an organization where
developers have gained fluency in working with Al coding assistants—an advantage that incumbent tools didn’t have.
Organizations also know more about the value of training and enablement, meaning that developers are also getting more
support for newer tools than they previously had.

Existing organizational performance also influences these outcomes. Some tools, like Tabnine, are more commonly found
INn enterprises, where PR throughput is lower overall. By contrast, smaller companies tend to adopt newer tools like agentic
IDEs sooner, and also tend to ship code more frequently. However, in the results below, each tool was well represented

across companies of all sizes.

These differences are also a reminder of how quickly this market is evolving. The performance landscape can shift in a
matter of weeks, which is why DX recommends avoiding vendor lock-in and taking a multi-vendor approach.

Weekly PR throughput by Al adoption level and Al tool
Sample of 32,700 developers at 170 companies

Daily Weekly Monthly

Amazon Q

Claude Code

Copilot

Cursor

Gitlab Duo

Tabnine

Windsurf

14

Al delivers bigger gains in modern languages

Not surprisingly, Al delivers bigger gains in modern programming languages. Because today's models are trained
primarily on widely available, publicly accessible code, languages like Python, Java, and Go see the strongest time savings.

Looking ahead, the real opportunity may lie in optimizing models for specific contexts. Rather than relying on generalized,

off-the-shelf models, companies are beginning to explore fine-tuned and bespoke approaches.

Weekly Al time savings by primary coding language
Sample of 23,500 developers at 43 companies

B Average hours/developer/week saved with Al

Hours saved per week

3
2
| 1
0]

Golang Python Rust Javascript/... Java Swift C#/.NET Ruby Kotlin C/C++ Scala COBOL

Primary Coding Language

15

Significant impact on dev ramp-up

One of the clearest impacts we're seeing is on developer onboarding and ramp-up time.

Time to 10th PR

Sample of 14,000 developers who started new roles after January 1, 2024

Days to 10 merged PRs

100

86
82

80

71
64

o7 60
52

39
40

20

0
Q12024 Q2 2024 Q3 2024 Q4 2024 Q12025 Q2 2025 Q3 2025

Note: these numbers will change as developers continue to hit their 10th PR milestone

Since Q12024 time to 10th PR has consistently decreased, correlating with the rise in adoption of Al tools.

Not only does Al usage correlate with hitting this onboarding milestone faster, but Al users start with a higher PR
throughput, and stay ahead of their peers who use Al less frequently. This is significant, shares Brian Houck from Microsofft,
a co-author of the SPACE framework. Onboarding patterns stick with a user. “By a developer's 10th PR, | have a greater
than 50% chance of predicting what their code output patterns will look like two years in the future,” says Houck based on
research carried out at Microsoft.

Data from July to September 2025 at six multinational enterprises showed their onboarding time being cut in half, from 91
days with no Al usage to just 49 days with daily use.

This makes onboarding an ideal moment to introduce Al into the developer workflow. Users who start with Al start ahead,

and stay ahead. By embedding Al tools into training and ramp-up materials, organizations can help new hires adopt these
practices early and establish them as a core part of how work gets done.

16

Big payoffs from structured enablement

One of the strongest signals we've observed is the impact of structured enablement on Al adoption. In one study, we
measured how much support developers felt they had—through training, rollout programs, and guidance—and correlated
that with outcomes.

Developers who received structured enablement reported significantly better results across multiple dimensions, from
code maintainabillity to confidence in changes, engagement, and speed. Conversely, teams left to figure things out on their

own saw higher time loss and wider knowledge gaps.

In short, structured enablement pays off in a big way. Simply handing out licenses is not enough.

If GenAl enablement increases by 25% then:

20 A

10

Estimated % change in outcome

17

The definition of developer is expanding

Al isn't just making engineers more efficient. It's allowing product managers, designers, and analysts to create working
software, breaking down the old walls between technical and non-technical roles and fundamentally reshaping how some

teams get work done.

Looking at PR data from 385 engineering managers, those using Al daily shipped twice as many PRs as those who rarely
used Al, or had no access to tools. For further comparison, the median PR throughput for managers in Q12025, regardless
of Al usage level, was 1.5 PRs/week, roughly the same as light Al users and non-users.

This increase in coding activity reflects the changing shape of the engineering manager role. As some companies are
opting to flatten out their org structure, engineering managers are getting closer to the code. In interviews, engineering
managers also report getting hands-on with Al tools in order to evaluate them, which can also explain the increase.

Weekly PR throughput by Al usage level

Sample of 385 engineering managers

B Median Weekly PR Throughput

<
23
1:5
l |

Daily Weekly Monthly Never/No Access Unknown/No Data
Al Usage Level

18

We're also seeing designers and product managers contributing more code than before. In a sample of 245 designers and
product managers at six companies, close to 60% of them use Al tools in their daily work.

Al usage levels, designers and product managers
Sample of 352 designers and product managers at © global enterprises

7.4%

40.6%

34.1%

17.9%

With Al making software creation more accessible to roles adjacent to development, some companies are rethinking team
composition and processes. Designers and PMs are now able to prototype and validate ideas much faster with fewer
engineering resources. Teams must find the right balance to ensure that engineering is brought into planning
conversations at the right time.

This expanding definition of developer also highlights the need for quality standards and review processes. Code review
and testing processes need to deal with Al-generated code and contributors with varying technical depth, while
maintaining security and reliability standards.

19

Non-Al factors still outweigh Al benefits

Although it’s clear that Al is saving developers time and accelerating workflows, when we look at how much time is being
lost to other tasks, those savings are eclipsed. Meeting-heavy days and interruptions remain the biggest obstacles for
developers, and other aspects of developer experience—like waiting for feedback from a ClI job or code review—introduce

delays.

Many of these bottlenecks are things that can be addressed, at least in part, by strategically integrating Al throughout the
SDLC. But organizations need to think beyond just code creation with Al to see bigger gains long-term.

Annualized distribution of developer time by workflow phase
Self-reported data from sample of 134,085 engineers

Meeting-heavy days
Interruption frequency
Al time savings

Build and test wait time
Dev environment toil
Review wait time

Code comprehension

Information-seeking

260 280 300

To unlock developer productivity at scale, organizations must
continue to identify and address bottlenecks and evaluate investments

in workflow improvements alongside investments in Al

20

Measuring engineering productivity in the Al era

Continuous measurement is a key piece of a successful Al strategy. In this section, we'll look at how to measure the impact

of Al tools inside your own organization.

Al Measurement Framework

To address the question of how to measure Al's impact on productivity, we collaborated with researchers, leading Al

vendors, and customers to develop the Al Measurement Framework—a research-based set of metrics for tracking

utilization, impact, and ROI of Al-assisted engineering.

The framework is vendor-agnostic and designed to be practical. Any company can begin using these metrics—or even a

subset of them—to establish a clearer, more consistent picture of how Al is influencing developer productivity and ROI.

Utilization Impact

How much are developers adopting and utilizing Al tools? How is Al impacting engineering productivity?

Cost

Is our Al spend and return on investment optimal?

e Al tool usage (DAUs/WAUS) Al-driven time savings (dev hours/

. week)
o Percentage of PRs that are Al-assisted

. . e Developer satisfaction
e Percentage of committed code that is

Al-generated e« DX Core 4 metrics, including:

o Tasks assigned to agents * » PR throughput
e Perceived rate of delivery

e Developer Experience Index (DXI)
e Code maintainability
e Change confidence

o Change fail percentage

e Human-equivalent hours (HEH) of
work completed by agents *

\-

o Al spend (both total and per
developer)

e Net time gain per developer
(time savings - Al spend)

o Agent hourly rate (HEH / Al spend) *

* Metrics for autonomous Al agents

Core metrics and benchmarks are as
Important as ever

Al iIntroduces new dimensions to track, like adoption and
cost, but it doesn't fundamentally change how we measure
developer productivity. The foundations remain the same.
Core measures provide the baseline against which Al's

Impact can be judged. In other words, Al metrics tell us Core Metrics -

what's happening, but core metrics confirm whether it's
actually driving improvement.

Measures what

Al metrics - is happening

Measures whether
It is working

21

https://getdx.com/research/measuring-ai-code-assistants-and-agents/

How top companies measure Al's impact in engineering

Companies like GitHub, Google, and Dropbox are examples of blending foundational engineering metrics, like those found

in the DX Core 4, with Al-specific metrics to track how and where Al is being used by developers.

The Al Measurement Framework is based on our experiences working with companies like Dropbox and Booking.com,
along with the data from 425+ companies that you've seen in this report. If your company is looking for a starting point to
better understand how Al is impacting your organization, the Al Measurement Framework is a recommended place to

start.

) GitHub

Al time savings

PR throughput

GitHub Copilot CSAT
Change Failure Rate
Engaged users

Innovation rate: feature
expenses/all engineering
expenses

Developer experience, e.g.
code maintainability, focus
time, overall satisfaction

e Microsoft

Usage of Al tools and agentic
workflows

PR cycle time (created to
merged)

Developer satisfaction
Change failure rate

Bad developer days
ldea-to-customer (innovation

velocity)

PR throughput

Change failure rate
DAU/WAU for Al tools

Al tool CSAT

Developer experience, esp
code maintainability,
understanding complex code,
knowledge gaps

Al time savings

Google

% of code by Al (drafted &
submitted) & Acceptance rate
Weekly active users (WAU)
Usage intensity

Change throughput

Active coding time,
investigation time, & review
time per change

Change cycle time

User sentiment and trust in Al
Perceived productivity
Developer friction

™M monzo

DAU/WAU for Al tools
PR throughout

Time savings per developer per

week

Change failure rate
Deployment frequency
CSAT for Al tools

Developer experience

Booking.com

DAU and WAU for Al tools
Time saved per dev

% of PRs that are Al-assisted
PR throughput

Developer CSAT

Change failure rate

<$ Dropbox

Daily active users (DAU) /
weekly active users (WAU) for
Al tools

Al tool CSAT, PR throughput
(comparison by Al usage)
Time saved per engineer per
week

Change fail percentage

Al spend total and per
developer

A ATLASSIAN

DAU/WAU across Al tools
(including multiples)
Acceptance rates of Al-
generated suggestions

% of PRs assisted by Al
Spend and throughput of
Issues assisted by Al
Qualitative developer

satisfaction

@ grammarly

Cycle time

DAU/WAU (per tool)
Acceptance rate

Diffs per engineer

% of time spent on feature

development (innovation ratio)

Al tool CSAT
Al spend (total and per
developer)

DX ||I THE PRAGMATIC ENGINEER

22

Summary

Al has been fast reshaping how software is built. The data shows real, measurable gains—time savings, faster ramp-up,
higher throughput, and broader participation in coding across roles. Yet the impact is uneven, and the picture is more

complex than the headlines suggest.

1. Avoid vendor lock-in: Al capabillities are evolving quickly. The smartest organizations are adopting measurement
frameworks and practices that remain vendor agnostic, ensuring flexibility as the ecosystem shifts.

2. Expand the definition of "developer": Al is enabling engineering managers, designers, and product managers to
contribute code at unprecedented levels. This broadens the definition of who participates in software creation, and also
means that organizations may need to rethink collaboration processes as well as testing and automation in order to
accommodate more Al-generated code, and more participation from people who don’t have a background as a

developer.
3. Measure adoption, impact, and cost: Utilization tells us if tools are being used, core productivity metrics show whether

they're making a difference, and cost ensures we're getting the return we expect. All three dimensions are essential.
4. Alisn't asilver bullet: While Al is unlocking real time savings and throughput gains, non-Al bottlenecks like meetings,
review delays, and Cl wait times continue to outweigh its benefits. Productivity at scale requires tackling both.

We'll continue sharing what we're seeing in DX data quarterly as adoption evolves. We encourage others to share their
experiences as well, so together we can build a clearer understanding of Al's impact on engineering and where it is

heading.

23

Methodologies

This report looks at data from 435 companies, across a combined sample of over 135,000 developers, from the time period
of July 1,2025 to October 16, 2025. Specific sample sizes are noted alongside the data visualisations in this report.
Companies range in size from <50 to over 10,000 employees in both technical and traditional sectors, with headquarters in
North America, Latin America, Europe, and Asia-Pacific.

Al usage levels

Al usage tags are derived from system data collected from Al coding assistants like GitHub Copilot, Cursor, and Claude
Code. For a full list of DX’s data connectors, refer to our documentation.

e Usage levels are determined by looking at the previous 4 weeks of Al usage

e |fauser has accessto more than one Al code assistant, their usage is aggregated across all tools

e |[fauserhas no evidence of Altool usage, they are classified as “Unknown/No data”, except for users who have self-
reported that they do not use Al tools. Those users have been classified as “Never”

Time savings

DX collects information about Al time savings through self-reported data in a periodic survey using the following closed-
option question.

On average, how much time do you save per week thanks to Al code assistants?

. 1

Less than 1 hour per week

1-2 hours per week

2-4 hours per week

4-6 hours per week

0-8 hours per week

8+ hours per week

ololololo|o

| don’t know / Not applicable

Point-in-time Snapshot

We do expect this data to change rapidly as organizations undergo significant transformation to adopt Al technologies.

24

https://getdx.com/connectors/

Acknowledgements

Special thanks to Andrew Boyagi, Gergely Orosz, Jennifer Riggins, Justin Reock, Michael Carr, and Nathen Harvey for their
contributions and support on this report.

Thank you also to everyone who contributed to our report covering how 18 top companies measure the impact of Al in

engineering (page 22): Antoine Daignan, Brad Vandehey, Brian Houck, Bruno Passos, Chris Chandler, Ciera Jaspan, Collin

Green, Dan McKenzie, Fabien Deshayes, Frank Fodera, Kazuaki Okumura, Kelly Anne Pipe, Maryna Veremenko, Meirav
Feiler, Micaela Stump, Paul Giglio, Ramesh Periyathambi, Raj Patel, and Shelly Stuart.

About DX

DX is a developer intelligence platform designed to help engineering organizations measure, understand, and improve
developer productivity. It gives engineering leaders and platform teams the data and insights they need to take the right

actions to drive higher ROl per developer. DX serves hundreds of the world's most iconic companies, including Dropbox,
Block, Pinterest, and BNY.

getdx.com

25

https://www.figma.com/design/AG8TmvOsgqbkjxzJsy00BJ/PDF-Master?node-id=706-3685
https://www.figma.com/design/AG8TmvOsgqbkjxzJsy00BJ/PDF-Master?node-id=706-3685

DA

Engineering intelligence

Learn more at getdx.com
Copyright © 2025

