
EXPERT GUIDE

Developer Productivity
Metrics at Top Tech
Companies

At DX, we regularly get asked to share what other companies are doing
to improve developer productivity. A common form of this request is a
leader asking which developer productivity metrics to adopt within their
organization.

We often work with Developer Productivity teams, which require metrics
in order to fully understand the developer experience at their company
and track changes to productivity. These teams think a lot about
metrics. We believe that other leaders can learn from what these teams
have already learned and which metrics they’re finding genuinely
valuable.

To provide insight, we interviewed leaders from Developer Productivity
functions at 17 top tech companies. The metrics they shared are listed in
the following table, and defined in the final section of this report.

2

The table provides an overview of developer productivity metrics used
across different companies. In this section, we’ll zoom in to take a closer
look at the metrics used by several organizations that are different in
size.

Google has a Developer Intelligence team dedicated to measuring
developer productivity and providing insights to leaders across the
company. For instance, they help internal tooling teams understand how
developers are using their tools, whether they’re satisfied with them, and
how fast, reliable, or intuitive the tools are. They also partner with
executives to understand the productivity of their organizations.

Whether measuring a tool, process, or team, Google’s Developer
Intelligence team subscribes to the belief that no single metric captures
productivity. Instead, they look at productivity through three dimensions:
speed, ease, and quality. These dimensions exist in tension with one
another, helping surface potential tradeoffs.

To illustrate, consider the example of measuring the code review
process. The team would capture metrics for each of the three
dimensions:

 Speed: How long does it take for code reviews to be completed?
 Ease: How easy or difficult is it for developers to move through the

code review process?
 Quality: What is the quality of feedback received from a code review?

Again, this is just one example that uses code review as a way to
illustrate. The specific metrics that Google uses varies depending on the
subject of measurement. But their three core dimensions remain
constant.

To calculate metrics, Google relies on a mix of both qualitative and
quantitative methods to get the fullest picture possible. Ciera Jaspan,
tech lead manager within the Developer Intelligence team, explains: “We
will measure using logs for speed. We'll also measure people's beliefs of
how fast they think they're going. We will also follow this up with diary
studies and interviews to make sure that this all lines up and matches up
together. We're talking about mixed methods.”

4

What Top Companies Measure

Google (10k+ employees)

https://getdx.com/podcast/developer-productivity-at-google/
https://link.springer.com/chapter/10.1007/978-1-4842-4221-6_2
https://link.springer.com/chapter/10.1007/978-1-4842-4221-6_2

5

Many of the metrics that Google uses are captured through behavioral
methods. Collin Green, UX research lead and manager within the
Developer Intelligence team, explains: “Technical debt is a thing that
we've run into that is just hard to find good objective metrics that tell you
how much and where and whether it's a problem. Surveys can help you
measure things that you don't know how to measure objectively. It can
also help you measure things that are in principle not measurable
objectively.”

LinkedIn, like Google, has a centralized Developer Insights team that’s
responsible for measuring developer productivity and satisfaction, and
delivering insights to the rest of the organization. This team sits within
the broader Developer Productivity and Happiness organization, which
focuses on reducing friction from key developer activities and improving
the internal tools they use.

LinkedIn uses three channels to capture developer productivity metrics:

 Quarterly survey: The Developer Insights team uses a quarterly
survey to assess the developer experience across a range of tools,
processes, and activities. It includes approximately 30 questions,
which developers answer in about 10 minutes. The survey is
delivered through a proprietary platform developed and maintained
by the Developer Insights team, allowing for advanced customization
and personalization of survey questions based on data collected
from their real-time feedback and metrics systems

 Real-time feedback system: To capture feedback in between
quarterly surveys, LinkedIn has developed a real-time feedback
system. This system tracks events and actions that developers
perform within development tools, and sends targeted surveys
based on specific triggers. The system uses smart throttling
mechanisms to avoid overwhelming developers with feedback
requests

 System-based metrics: LinkedIn also calculates metrics using data
from their systems, providing high precision measurements for things
such as build times and deployment frequency. The Developer
Insights team maintains a global system for ingesting and analyzing
this data, which they call the Developer Insights Hub (or iHub). This
system allows teams across LinkedIn to create custom dashboards
and metrics tailored to their needs.

LinkedIn (10k+ employees)

GOOGLE

https://getdx.com/podcast/developer-feedback-at-linkedin/

6

Here are some examples of the specific metrics that they focus on

 Developer Net User Satisfaction (NSAT) measures, on a quarterly
basis, how happy developers are overall with LinkedIn’s development
systems

 Developer Build Time (P50 and P90) measures the time, in seconds,
developers spend waiting for their builds to finish locally during
development

 Code Reviewer Response Time (P50 and P90) measures how long it
takes, in business hours, for code reviewers to respond to each
update of the code review from the author

 Post-Commit CI Speed (P50 and P90) measures how long it takes, in
minutes, for each commit to get through the continuous integration
(CI) pipeline

 CI Determinism is the opposite of test flakiness: the likelihood that a
test suite’s result will be valid and not a flake

 Deployment Success Rate measures how often deployments to
production succeed.

LinkedIn’s Developer Insights team looks at both qualitative and
quantitative metrics in each of these areas. For example, for build times,
they’ll compare the objective measure of how long builds take with how
satisfied developers are with their builds. Grant Jenks, Senior Tech Lead
for their developer insights platform, explains: “Even if the quantitative
metrics say that everyone’s builds are fantastic, if developers are saying
‘I hate my builds,’ you should probably listen to that.“

While the quantitative metrics listed above are typically calculated using
medians (i.e., 50th percentiles), one challenge they’ve found with
medians is that metrics can be less moveable when outliers are
improved. For example, in one instance, excessively long front-end
builds were reduced from 25 seconds to 3 seconds. But because the
median time was higher than that, the impact wasn’t being reflected in
their metrics.

To solve these issues, they often use winsorized means which are
calculated by replacing high and low end values with numbers closer to
the middle. Jenks explains: “Figure out your 99th percentile. And instead
of throwing away all the data points that are above the 99th percentile,
clip them. So if your 99th percentile is like 100 seconds, and you have a
data point that's 110 seconds, you cross out 110, and you write 100. And
now you calculate your mean.”

LINKEDIN

https://getdx.com/podcast/grant-jenks-linkedin
https://en.wikipedia.org/wiki/Winsorized_mean

7

Peloton’s measurement approach began by capturing qualitative insights
through developer experience surveys. Later, they started pairing this
data with quantitative metrics to derive a more full picture.

Peloton measures productivity by focusing on four key areas:
engagement, velocity, quality, and stability. Here are some of the metrics
they use to capture each:

 Engagement: Developer Satisfaction Score
 Velocity: Time to 1st and 10th PR for all new hires, Lead Time,

Deployment Frequency
 Quality: % of PRs under 250 lines, Line Coverage, Change Failure

Rat
 Stability: Time to Restore Services

Thansha Sadacharam, head of tech learning and insights at Peloton
explains the roots of their survey program: “I very strongly believe, and I
think a lot of our engineers also really appreciate this, that engineers
aren't robots, they're humans. And just looking at numbers or looking at
certain key metrics don't drive the whole story. So for us, having a really
comprehensive survey that helped us understand that entire developer
experience was really important.”

Their survey is conducted biannually, with each survey being sent to a
random sample of roughly half of their developers. With this approach,
individual developers only need to participate in one survey per year,
minimizing the overall time spent on filling out surveys while still
providing a statistically significant representative set of data results.

Peloton (1-10k employees)

Although not listed in the table, a special metric LinkedIn provides to
teams is a composite score called the Developer Experience Index which
is an aggregate score based on a number of different individual metrics
such as the ones listed earlier. Jenks generally cautions against the use
of composite scores due to the complexity of developing and calibrating
them. He explains: “we don't track it over time. We reserve the right to
change the aggregation and the weightings behind it at any time. We tell
people don't ever put this in an OKR.”

LINKEDIN

https://getdx.com/podcast/developer-experience-survey-at-peloton/

There are several scaleups on the list: Amplitude, GoodRx, Intercom,
Lattice, Notion, and Postman. Here are some commonalities in what
these companies measure:

1. Ease of Delivery: Most of these companies measure ease of delivery,
a qualitative measure of how easy or difficult developers feel it is to do
their work.

Multiple DevProd leaders shared how they use this metric as a “north
star” for their work, since their teams’ goal is to make developers’ lives
easier. This metric is also useful as a way to show the impact of these
teams thanks to it being fairly moveable (i.e., directly impacted by the
work of these teams). From a theory standpoint, this metric also
captures key aspects of the developer experience such as cognitive
load and feedback loops.

2. Engagement: Most of these companies also track engagement, a
measure of how excited and stimulated developers feel with their work.
While engagement is commonly measured in HR engagement surveys,
DevProd teams also cited focusing on Engagement for several reasons.
First, developer engagement and productivity are closely linked. In other
words, “happy developers are productive developers” and so developer
engagement can be viewed as an indicator of productivity. In addition,
leaders mentioned that a key benefit of measuring engagement is to
counterbalance other metrics which emphasize speed.

3. Time Loss. GoodRx and Postman pay attention to the average amount
of lost time, measured by the percentage of developers’ time that is lost
due to obstacles in their work environment. This metric is similar to ease
of delivery in that it provides DevProd teams a moveable metric that can
be directly impacted by their work. In contrast to ease of delivery, one of
the benefits of measuring time loss is that it can be well-translated into
dollars, and therefore easily understood by other business leaders. For
example, if an organization with $10,000,000 in fully loaded engineering
payroll costs is able to reduce time loss from 20% to 10% through an
initiative, that would translate into $1,000,000 of savings.

4. Change Failure Rate. Change Failure Rate – one of the four key
metrics from the DORA research program – is a top-level metric tracked
by several companies including Amplitude and Lattice. The DORA team
defines change failure rate as the “percentage of changes to production
or releases to users result in degraded service (for example, lead to
service impairment or service outage) and subsequently require
remediation (for example, require a hotfix, rollback, fix forward, patch).”

Scaleups (500-1k employees)

https://queue.acm.org/detail.cfm?id=3595878
https://queue.acm.org/detail.cfm?id=3595878
https://newsletter.getdx.com/p/satisfaction-productivity

9

As we’ve seen, there’s quite a bit of overlap in what different developer
productivity teams are measuring. But there are also a few unique
metrics worth highlighting:

 DoorDash, GoodRx, and Spotify all track versions of Adoption Rate.
Spotify’s version is a measure of how many developers have adopted
their Golden Standards. In general, this is a measure of how many
developers actively use a product or service

 Uber’s Design Docs Generated per Engineer. Design docs are
written by engineers for non-trivial projects before they start
meaningful work—the idea is to get feedback early and ultimately
decrease the time taken to complete a project. Their metric tracks
how frequently developers are following this practice.

 Etsy’s Experiment Velocity. At Etsy, each team designs and runs its
own experiments to assess how users will respond to new features.
This practice is a core aspect of their engineering culture, facilitating
a culture of learning and helping teams stay focused on the
customer. Etsy has developed an in-house experimentation platform
to track the progress of these experiments. Metrics include how
many experiments are started each week, how many are stopped,
and how many had a positive hit rate. For context, Former CTO, Mike
Fisher, has said the ultimate goal would be to measure learning
velocity.

 Chime and LinkedIn’s Developer CSAT/NSAT. Chime measures a
Developer Customer Satisfaction (CSAT) score for every tool and
service developers use. This metric is captured through their
quarterly developer surveys. LinkedIn‘s Developer NSAT (Net User
Satisfaction) measures how satisfied developers are overall with their
development systems. These metrics are different in two ways: first,
Chime’s CSAT focuses on specific tools, whereas LinkedIn’s NSAT
measures developers’ satisfaction with all tools overall. Also, Chime’s
metric is calculated as a percentage of positive responses, whereas
LinkedIn’s is the percentage of satisfied responses subtracted by the
percentage of dissatisfied responses.

Other unique metrics

Lattice measures Change Failure Rate as the number of PagerDuty
incidents divided by the number of deployments. Amplitude measures it
as the P0s over production deploys (the P0 count goes through
PagerDuty, and the deploy count is from Spinnaker).

SCALEUPS

https://engineering.atspotify.com/2020/08/how-we-use-golden-paths-to-solve-fragmentation-in-our-software-ecosystem/
https://newsletter.pragmaticengineer.com/p/rfcs-and-design-docs
https://getdx.com/podcast/etsy-devex-initiative
https://getdx.com/podcast/etsy-devex-initiative

We generally recommend following Google’s Goals, Signals, Metrics
(GSM) framework to help guide metric selection. Too often, teams jump
to specific metrics before thinking through what they truly want to
understand or track. The GSM framework can help teams decide what
their goal is, and then work backwards to select metrics that serve their
goal.

Ciera Jaspan, from Google’s Developer Intelligence team, has explained
how the GSM process is used at Google: “We always encourage people
to follow the goal, signals, metrics approach. We ask them to first write
down your goals. What is your goal for speed? What is your goal for
ease? What's your goal for quality? Write those down first and then ask
your question of, what are the signals that would let you know that
you've achieved your goal? Regardless of whether they're measurable.
Signals are not metrics. What would be true of the world if you've
achieved your goal? At that point, try to figure out what are the right
metrics.”

Here are some examples that may help:

Most DevProd teams have a charter that sounds something like “make
software engineering easier at our company.” For example, the charter
for Google’s Developer Insight team is to make it fast and easy for
developers to deliver great products. Slack’s is to “make the
development experience seamless for all engineers,” and Stripe’s is to
“make software engineering easier.”

We can work backwards from these goals to define our metrics. If we
want to make it easier for developers to deliver high quality software,
how do we know whether we’ve done that? We might look for signals
such as

 How easy it is for developers to deliver softwar
 How quickly developers are delivering softwar
 The quality of software that’s being delivered

For each of these categories, we can define metrics to help us know
how we’re doing. For example

 Speed = Perceived Delivery Speed, Perceived Productivity
 Ease = Ease of Delivery, Deployment Lead Time, Build Failure Rate
 Quality = Incident frequency, Perceived Software Quality

How to choose your own metrics

If you’re a Developer Productivity team

https://abseil.io/resources/swe-book/html/ch07.html
https://abseil.io/resources/swe-book/html/ch07.html

11

If you’re a CTO, VPE, or Director of Engineering, it’s likely that your scope
is broader than the definition of developer productivity that’s been
discussed thus far in this article. In fact, when I speak with engineering
leaders who are figuring out metrics, they’ve often been asked for
metrics by their CEO or leadership team. My advice here is to reframe
the problem. What your leadership team wants is less about figuring out
the perfect productivity metrics and much more about being made to
feel confident that you’re being a good steward of their investment in
engineering.

To demonstrate good stewardship, consider selecting metrics that fall
within three buckets:

1. Business impact. You should report on current or planned projects
alongside data that addresses questions like: Why are these the right
things to build now? How does this project make the business money or
otherwise support its goals? Is this project on track or delayed?

This type of reporting is often seen as the responsibility of the product
team, but only engineering can represent the full set of projects being
worked on. (For example, a database migration project is unlikely to be
on product’s roadmap).

If you’re an executive

These metrics should sound similar to many of the metrics discussed
earlier in this article. Top-level metrics like these can help your DevProd
team convey the value and impact of your efforts and keep everyone
aligned both within and outside of your team.

In addition to top-level metrics, DevProd teams also need operational
metrics to tie to specific projects or OKRs. These could be metrics like
developer satisfaction with specific tools, adoption rate of a particular
service, or granular measurements of developers’ workflows. There are
no good one-size-fits-all solutions here, but the important thing is for
teams to choose metrics they can control, rather than trying to target
high-level key metrics that can be affected by a number of confounding
factors.

METRICS SELECTION

12

2. System performance. Engineering organizations produce software,
so stakeholders will want to know about the health and performance of
these systems. Are they fast and reliable? Secure and well-maintained?
Are users satisfied with them? Useful metrics to report here include
things like uptime, number of incidents, and product NPS scores. If you
have a dedicated Infra or UXR team, they likely are capturing metrics
that fall under this bucket.

3. Engineering effectiveness. Stakeholders want to know how effective
the engineering organization is and how it can be improved. This article
has been primarily focused on this bucket, so you can take what we’ve
learned from how DevProd functions measure and apply it here.

METRICS SELECTION

Business impact

What are we working on right
now, and why?

System Performance

How performant and reliable
are our systems?

Developer Effectiveness

How effective is the
engineering organization and
how can it be improved?

Current and planned projects,
including
 Business rationale and

success metric
 Project status (e.g.

delivered, on track, at-
risk)

 Application latency and
uptim

 Number of incident
 Server cost
 User NPS

Measures of speed, ease,
and quality, for example
 Perceived Rate of Deliver
 Weekly Time Los
 Ease of Deliver
 Developer Satisfactio
 Incident Frequenc
 Perceived Software

Qualit
 Change Failure Rate

Once you’ve determined your goals for measuring, use this list of metrics
as a starting point for selecting and defining the specific metrics you'll
use. This is a list of all the metrics that were surfaced by the companies
mentioned in this article.

Adoption Rate

Adoption rate is a measure of how many developers actively use a product or service. Ideally,
this is a percentage of the number of developers using the product out of the total number of
developers that the product is intended to serve. However, some teams use simpler metrics:
for example, calculating the total number of users that have ever used a product. They may
also calculate the total number of users that have used the product within a given timeframe,
such as within the past month or quarter.

There are also examples of companies measuring the adoption of a process, such as Uber
measuring “Design Docs Generated per Engineer.” Design docs are written by engineers for
non-trivial projects before they start meaningful work: the idea is to get feedback early and
ultimately decrease the time taken to complete a project. Uber’s metric tracks how frequently
developers are following this practice.

Availability

Availability measures the percentage of time that your infrastructure is operational and
accessible within a given time period. It’s often used as a metric to report on when discussing
system performance.

Change Failure Rate

One of the four key DORA metrics, change failure rate is used as a measure of stability. The
DORA team defines change failure rate as “percentage of changes to production or releases to
users result in degraded service (for example, lead to service impairment or service outage)
and subsequently require remediation (for example, require a hotfix, rollback, fix forward,
patch).” The difficult part of this metric is defining “failure.”

For some real-world examples, Lattice measures Change Failure Rate as the number of
PagerDuty incidents divided by the number of deployments. Amplitude measures it as the P0s
over production deploys (the P0 count goes through PagerDuty, and the deploy count is from
Spinnaker). Another way to calculate Change Failure Rate is to measure the percentage of
deployments that were hotfixes or rollbacks.

CI Determinism (CID)

CI Determinism is the opposite of test flakiness: it measures the likelihood of a test suite’s result
being valid, and not a flake. The benefit of using this metric over Test Flakiness is that CI
Determinism is a number that’s good when it goes up.

LinkedIn is the only company listed that includes CI Determinism as a top-level metric. They
use a system that runs CI tests at specific times every week to track whether these tests give
consistent results or whether they change from one run to another. Each test gets a score
based on how often it gets the same result. If a test is run 10 times and it passes 7 out of those
10 times, its Determinism Score would be 70%. A higher score is better because it means the
test is more reliable. When they aggregate the metric, they average all the Determinism Scores
to get an overall Determinism Score. This way, codebases that run less frequently but are still
flaky have their flakiness equally represented in the metric as codebases that are run
frequently.

Metrics definitions

13

https://newsletter.pragmaticengineer.com/p/rfcs-and-design-docs
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance

Code Reviewer Response Time

This measures how long it takes for code reviewers to respond to each update from a
developer during a code review. Both LinkedIn and Google subscribe to the belief that one of
the most important qualities of a code review is that reviewers respond quickly. This metric
measures how quickly reviewers respond to each update that a developer posts.

LinkedIn calculates Code Reviewer Response Time as the time, in business hours, that it takes
between each request and response. A request is when a reviewer gets a notification that an
author has taken some action, and now the author is blocked while waiting for a response.
“Response” is defined as the first time after a request that a reviewer or code owner responds
to the PR and sends that response to the author. LinkedIn specifically looks at the P50 and the
P90 values.

As a similar metric, Atlassian measures Pull Request Cycle Time (also known as PR Creation to
Merge Time). Theirs is a measure of the average time it takes for a pull request to go from
‘open’ to ‘merged’ over the last ten pull requests. The difference between Atlassian’s and
LinkedIn’s metric is that Atlassian’s looks at the full process, whereas LinkedIn is focused on
driving a specific behavior (faster response times).

Deep Work

Time for Deep Work, or “Focus Time,” is a measure of the amount of uninterrupted time
developers have at work. Most teams use surveys to capture variations of this metric:

 Developer satisfaction with the amount of time they have for deep work can be measured
in a survey, with the question: “How satisfied are you with the amount of uninterrupted time
you have for deep work?

 Meeting Heavy Days or the inverse, Number of Days with Sufficient Focus Time, can be
tracked by asking developers: “In a typical week, how many days do you have with more
than one scheduled meeting (not including standups)?” Response items should provide a
scale of options, such as 0 days, 1 day, 2 days, 3 days, 4 or more days.

 Interruption Frequency can be measured by asking developers: “In a typical week, how
often are you interrupted from your primary task to work on something else that was
unplanned or suddenly requested?” Response items should provide a scale of options, such
as Less than once per week, At least once per week, At least once every two days, At least
once per day, At least once every couple of hours.

Deployment Frequency

Deployment Frequency is another one of the four key DORA metrics: it measures how often an
organization successfully releases to production. Teams may choose to look at the frequency
of successful deployments over any given time period (hourly, daily, weekly, monthly,
yearly). The challenge with this metric is defining what constitutes a successful deployment to
production. DORA’s research looks at successful deployments to any amount of traffic, but
teams may define a successful deployment differently (for example, deploying to 50% or more
traffic).

Measuring deployment frequency in a generic way can be tricky for some organizations. As an
alternative, LinkedIn shared that they’ve begun to work on a metric called “Deployment
Freshness,” which measures how old code is in production. Improving Deployment Freshness
should bring the same value to the business as improving Deployment Frequency.

Developer Build Time

Developer Build Time measures how much time developers spend waiting for their build tool to
complete. This is a common metric that Developer Productivity teams focus on because it
often represents a big opportunity to improve developer productivity. In many companies,
developers spend a significant amount of their time waiting for builds to complete, and even
small improvements to make builds faster are beneficial.

LinkedIn defines this as the wall-clock time from when the build tool starts a “build” to when it
completes. The duration is measured and reported in seconds. Critically, LinkedIn only counts
this only for builds invoked by human beings, that we reasonably assume they are waiting on
(this is notable because other teams have run into issues by including build times from robotic
builds in their metric). LinkedIn excludes all builds run on the CI infrastructure in this metric.

https://linkedin.github.io/dph-framework/why-our-metrics.html
https://newsletter.getdx.com/p/build-times-and-developer-productivity
https://newsletter.getdx.com/p/build-times-and-developer-productivity
https://getdx.com/podcast/developer-productivity-at-google/

Developer Customer Satisfaction (CSAT) and Net User Satisfaction (NSAT)

Developer Satisfaction metrics can capture how satisfied developers are overall with their
development systems, or how satisfied they are with specific tools. Satisfaction is typically
captured quarterly in a developer experience survey. Teams can ask a question about
developers’ overall satisfaction, and also ask about their experience using specific tools
(CSAT).

Some Developer Productivity teams also measure Engagement, which can be captured in a
developer survey with the question “How energized are you by your work?”. This is a measure
of how excited and stimulated developers feel with their work. It’s commonly measured in HR
engagement surveys, however DevProd teams also focus on engagement because it is an
indicator of productivity. Additionally, it can be used to counterbalance other measures that
emphasize speed. Delivering software faster is good, but not at the expense of developer
happiness.

Ease of Delivery

Many of the companies included in the report measure Ease of Delivery, which is a qualitative
measure of how easy or difficult it is for developers to do their work. This is frequently used as
a “north star metric” for Developer Productivity teams since their mission is to make it easier for
developers to do their jobs.

Ease of Delivery can be captured in a quarterly survey using the question, “How easy or
difficult is it for you to do work as a developer or technical contributor at [Company]?”

Experiment Velocity (or Learning Velocity)

Experiment Velocity is a unique metric from Etsy. At Etsy, experiments are a core aspect of their
engineering culture as a way to bring teams closer to the customer and learn quickly. Each
team at Etsy designs and runs its own experiments to assess how users will respond to new
features.

The Experiment Velocity metric was developed using an in-house experimentation platform
that tracks the progress of these experiments. Etsy pays attention to how many experiments
are started each week, how many are stopped, and how many had a positive hit rate.

Lead Time for Changes

Another one of the four key DORA metrics, Lead Time for Changes measures the amount of
time between a code change and the release of this change to end users. This is a measure of
speed.

As described by the DORA program, “The Lead Time for Changes metric requires two
important pieces of data: when the commit happened, and when the deployment happened.
This means that for every deployment, you need to maintain a list of all the changes included in
the deployment. This is easily done by using triggers with a SHA mapping back to the commits.
With the list of changes in the deploy table, you can join back to the changes table to get the
timestamps, and then calculate the median lead time.”

GitLab measures Lead Time for Changes by calculating the median time it takes for a merge
request to get merged into production (from master).

Perceived Rate of Delivery

Perceived Rate of Delivery is a measure of how fast or slow a developer feels their team
delivers software. This is a measure of speed.

Teams typically use Perceived Rate of Delivery to understand whether development teams feel
as though they’re delivering quickly or not. When teams only rely on quantitative metrics, they
often wonder whether what they’re seeing is good or bad. Take deployment frequency: this
metric alone doesn’t tell us how difficult it is for a team to deploy code, or whether a team feels
they’re shipping software quickly. Perceived Rate of Delivery provides that data.

Perceived Productivity is another similar metric used for the same reasons: it provides the
developers’ perspective on how often they feel productive within a given week.

https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance

Time to Restore Service

Time to Restore Service is another one of the four key DORA metrics. It measures how long it
takes an organization to recover from a failure in production. It’s intended to be used as a
measure for stability.

This metric is typically paired with Change Failure Rate which measures the percentage of
changes that require a rollback or hotfix. Time to Restore services will track the time from when
the change (that required a rollback) was released, to when it was resolved.

Atlassian measures MTTR as the average time it takes to fully resolve a failure, as measured
from when an incident occurs to when the component becomes fully functional again,
measured over the last 10 incidents. GitLab measures Time to Restore Service as the median
time (number of seconds) an incident was open for on a production environment, in the given
time period they’re viewing.

Time to 1st and 10th PR

Time to 1st and 10th PR is a measure Peloton uses to understand the ramp-up time for new
developers. These metrics aren’t used to evaluate individual developers, but rather to measure
the impact of improvements to the onboarding process, which is something their Tech
Enablement & Developer Experience team has focused on.

Weekly Time Loss

Weekly Time Loss calculates the percentage of time that developers lose due to obstacles or
inefficiencies in their work environment (for example, slow tools or processes, unplanned work,
unclear tasks). Similar to Ease of Delivery, this is frequently used as a “north star metric” by
Developer Productivity teams to track the impact of their work. For example, if they introduce a
change that brings Weekly Time Loss from 23% down to 20%, that can translate to a significant
impact on the business for a mid-sized organization or larger.

Measure developer productivity like the world’s top tech companies.
Learn more here.

© 2024 DX.

https://docs.gitlab.com/ee/user/analytics/dora_metrics.html#:~:text=For%20software%20leaders%2C%20time%20to,advantages%20and%20increase%20business%20results.
https://getdx.com/

