
R E P O RT

Developer Productivity
Metrics at Top Tech
Companies

Developer Productivity Metrics at
Top Tech Companies
DX Analytics Team

At DX, we regularly get asked to share what other companies are doing to improve developer

productivity. A common form of this request is a leader asking which developer productivity

metrics to adopt within their organization.

We often work with Developer Productivity teams, which require metrics in order to fully

understand the developer experience at their company and track changes to productivity.

These teams think a lot about metrics. We believe that other leaders can learn from what these

teams have already learned and which metrics they’re finding genuinely valuable.

To provide insight, we interviewed leaders from Developer Productivity functions at 17 top tech

companies. The metrics they shared are listed in the table on the following page, and defined

in the final section of this report.

2

3

What top companies
measure

The table on the previous page provides an

overview of developer productivity metrics

used across different companies.

In this section, we’ll zoom in to take a closer

look at the metrics used by several

organizations that are different in size.

Google (10k+ employees)

Google has a Developer Intelligence team

dedicated to measuring developer

productivity and providing insights to

leaders across the company. For instance,

they help internal tooling teams understand

how developers are using their tools,

whether they’re satisfied with them, and

how fast, reliable, or intuitive the tools are.

They also partner with executives to

understand the productivity of their

organizations.

Whether measuring a tool, process, or

team, Google’s Developer Intelligence team

subscribes to the belief that no single

metric captures productivity.

Instead, they look at productivity through

three dimensions: speed, ease, and quality.

These dimensions exist in tension with one

another, helping surface potential

tradeoffs.

To illustrate, consider the example of

measuring the code review process. The

team would capture metrics for each of the

three dimensions:�

� Speed: How long does it take for code

reviews to be completed?�

� Ease: How easy or difficult is it for

developers to move through the code

review process?�

� Quality: What is the quality of feedback

received from a code review?

Again, this is just one example that uses

code review as a way to illustrate. The

specific metrics that Google uses varies

depending on the subject of measurement.

But their three core dimensions remain

constant.

To calculate metrics, Google relies on a mix

of both qualitative and quantitative

methods to get the fullest picture possible.

4

https://getdx.com/podcast/developer-productivity-at-google/
https://link.springer.com/chapter/10.1007/978-1-4842-4221-6_2
https://link.springer.com/chapter/10.1007/978-1-4842-4221-6_2

Ciera Jaspan, tech lead manager within the

Developer Intelligence team, explains: “We

will measure using logs for speed. We'll also

measure people's beliefs of how fast they

think they're going. We will also follow this

up with diary studies and interviews to

make sure that this all lines up and matches

up together. We're talking about mixed

methods.”

Many of the metrics that Google uses are

captured through behavioral methods.

Collin Green, UX research lead and

manager within the Developer Intelligence

team, explains: “Technical debt is a thing

that we've run into that is just hard to find

good objective metrics that tell you how

much and where and whether it's a problem.

Surveys can help you measure things that

you don't know how to measure objectively.

It can also help you measure things that are

in principle not measurable objectively.”

LinkedIn (10K+ employees)

 LinkedIn, like Google, has a centralized

Developer Insights team that’s responsible

for measuring developer productivity and

satisfaction, and delivering insights to the

rest of the organization. This team sits

within the broader Developer Productivity

and Happiness organization, which focuses

on reducing friction from key developer

activities and improving the internal tools

they use.

LinkedIn uses three channels to capture

developer productivity metrics:

1. Quarterly survey: The Developer Insights

team uses a quarterly survey to assess the

developer experience across a range of

tools, processes, and activities. It includes

approximately 30 questions, which

developers answer in about 10 minutes. The

survey is delivered through a proprietary

platform developed and maintained by the

Developer Insights team, allowing for

advanced customization and

personalization of survey questions based

on data collected from their real-time

feedback and metrics systems.

5

https://getdx.com/podcast/developer-feedback-at-linkedin/

2. Real-time feedback system: To capture

feedback in between quarterly surveys,

LinkedIn has developed a real-time

feedback system. This system tracks events

and actions that developers perform within

development tools, and sends targeted

surveys based on specific triggers. The

system uses smart throttling mechanisms

to avoid overwhelming developers with

feedback requests.

3. System-based metrics: LinkedIn also

calculates metrics using data from their

systems, providing high precision

measurements for things such as build

times and deployment frequency. The

Developer Insights team maintains a global

system for ingesting and analyzing this

data, which they call the Developer Insights

Hub (or iHub). This system allows teams

across LinkedIn to create custom

dashboards and metrics tailored to their

needs.

Here are some examples of the specific

metrics that they focus on�

� Developer Net User Satisfaction (NSAT)

measures, on a quarterly basis, how

happy developers are overall with

LinkedIn’s development systems�

� Developer Build Time (P50 and P90)

measures the time, in seconds,

developers spend waiting for their builds

to finish locally during development�

� Code Reviewer Response Time (P50 and

P90) measures how long it takes, in

business hours, for code reviewers to

respond to each update of the code

review from the author�

� Post-Commit CI Speed (P50 and P90)

measures how long it takes, in minutes,

for each commit to get through the

continuous integration (CI) pipeline�

� CI Determinism is the opposite of test

flakiness: the likelihood that a test suite’s

result will be valid and not a flake�

� Deployment Success Rate measures

how often deployments to production

succeed.

6

LinkedIn’s Developer Insights team looks at

both qualitative and quantitative metrics in

each of these areas. For example, for build

times, they’ll compare the objective

measure of how long builds take with how

satisfied developers are with their builds.

Grant Jenks, Senior Tech Lead for their

developer insights platform, explains: “Even

if the quantitative metrics say that

everyone’s builds are fantastic, if developers

are saying ‘I hate my builds,’ you should

probably listen to that.“

While the quantitative metrics listed above

are typically calculated using medians (i.e.,

50th percentiles), one challenge they’ve

found with medians is that metrics can be

less moveable when outliers are improved.

For example, in one instance, excessively

long front-end builds were reduced from 25

seconds to 3 seconds. But because the

median time was higher than that, the

impact wasn’t being reflected in their

metrics.

To solve these issues, they often use

Winsorized means which are calculated by

replacing high and low end values with

numbers closer to the middle.

Jenks explains: “Figure out your 99th

percentile. And instead of throwing away all

the data points that are above the 99th

percentile, clip them. So if your 99th

percentile is like 100 seconds, and you have

a data point that's 110 seconds, you cross

out 110, and you write 100. And now you

calculate your mean.”

Although not listed in the table, a special

metric LinkedIn provides to teams is a

composite score called the Developer

Experience Index which is an aggregate

score based on a number of different

individual metrics such as the ones listed

earlier. Jenks generally cautions against the

use of composite scores due to the

complexity of developing and calibrating

them. He explains: “we don't track it over

time. We reserve the right to change the

aggregation and the weightings behind it at

any time. We tell people don't ever put this

in an OKR.”

7

https://getdx.com/podcast/grant-jenks-linkedin
https://en.wikipedia.org/wiki/Winsorized_mean

Peloton (1-10k employees)

Peloton’s measurement approach began by

capturing qualitative insights through

developer experience surveys. Later, they

started pairing this data with quantitative

metrics to derive a more full picture.

Peloton measures productivity by focusing

on four key areas: engagement, velocity,

quality, and stability. Here are some of the

metrics they use to capture each:

�

� Engagement: Developer Satisfaction

Score�

� Velocity: Time to 1st and 10th PR for all

new hires, Lead Time, Deployment

Frequency�

� Quality: % of PRs under 250 lines, Line

Coverage, Change Failure Rat�

� Stability: Time to Restore Services

Thansha Sadacharam, head of tech learning

and insights at Peloton explains the roots of

their survey program: “I very strongly

believe, and I think a lot of our engineers

also really appreciate this, that engineers

aren't robots, they're humans.

And just looking at numbers or looking at

certain key metrics don't drive the whole

story. So for us, having a really

comprehensive survey that helped us

understand that entire developer

experience was really important.”

Their survey is conducted biannually, with

each survey being sent to a random sample

of roughly half of their developers. With this

approach, individual developers only need

to participate in one survey per year,

minimizing the overall time spent on filling

out surveys while still providing a

statistically significant representative set of

data results.

Scaleups

There are several scaleups on the list:

Amplitude, GoodRx, Intercom, Lattice,

Notion, and Postman. Here are some

commonalities in what these companies

measure:

1. Ease of Delivery: Most of these

companies measure ease of delivery, a

qualitative measure of how easy or difficult

developers feel it is to do their work.

8

https://getdx.com/podcast/developer-experience-survey-at-peloton/

Multiple DevProd leaders shared how they

use this metric as a “north star” for their

work, since their teams’ goal is to make

developers’ lives easier. This metric is also

useful as a way to show the impact of these

teams thanks to it being fairly moveable

(i.e., directly impacted by the work of these

teams). From a theory standpoint, this

metric also captures key aspects of the

developer experience such as cognitive

load and feedback loops.

2. Engagement: Most of these companies

also track engagement, a measure of how

excited and stimulated developers feel with

their work. While engagement is commonly

measured in HR engagement surveys,

DevProd teams also cited focusing on

Engagement for several reasons. First,

developer engagement and productivity are

closely linked. In other words, “happy

developers are productive developers” and

so developer engagement can be viewed as

an indicator of productivity. In addition,

leaders mentioned that a key benefit of

measuring engagement is to

counterbalance other metrics which

emphasize speed.

3. Time Loss. GoodRx and Postman pay

attention to the average amount of lost

time, measured by the percentage of

developers’ time that is lost due to

obstacles in their work environment. This

metric is similar to ease of delivery in that it

provides DevProd teams a moveable metric

that can be directly impacted by their work.

In contrast to ease of delivery, one of the

benefits of measuring time loss is that it can

be well-translated into dollars, and

therefore easily understood by other

business leaders. For example, if an

organization with $10,000,000 in fully

loaded engineering payroll costs is able to

reduce time loss from 20% to 10% through

an initiative, that would translate into

$1,000,000 of savings.

4. Change Failure Rate. Change Failure Rate

– one of the four key metrics from the DORA

research program – is a top-level metric

tracked by several companies including

Amplitude and Lattice. The DORA team

defines change failure rate as the

“percentage of changes to production or

releases to users result in degraded service

(for example, lead to service impairment or

service outage) and subsequently require

remediation (for example, require a hotfix,

9

https://queue.acm.org/detail.cfm?id=3595878
https://queue.acm.org/detail.cfm?id=3595878
https://newsletter.getdx.com/p/satisfaction-productivity

rollback, fix forward, patch).”

Lattice measures Change Failure Rate as

the number of PagerDuty incidents divided

by the number of deployments. Amplitude

measures it as the P0s over production

deploys (the P0 count goes through

PagerDuty, and the deploy count is from

Spinnaker).

Other unique metrics

As we’ve seen, there’s quite a bit of overlap

in what different developer productivity

teams are measuring. But there are also a

few unique metrics worth highlighting:

1. DoorDash, GoodRx, and Spotify all track

versions of Adoption Rate. Spotify’s version

is a measure of how many developers have

adopted their Golden Standards. In general,

this is a measure of how many developers

actively use a product or service.

2. Uber’s Design Docs Generated per

Engineer. Design docs are written by

engineers for non-trivial projects before

they start meaningful work—the idea is to

get feedback early and ultimately decrease

the time taken to complete a project.

Their metric tracks how frequently

developers are following this practice.

3. Etsy’s Experiment Velocity. At Etsy, each

team designs and runs its own experiments

to assess how users will respond to new

features. This practice is a core aspect of

their engineering culture, facilitating a

culture of learning and helping teams stay

focused on the customer. Etsy has

developed an in-house experimentation

platform to track the progress of these

experiments. Metrics include how many

experiments are started each week, how

many are stopped, and how many had a

positive hit rate. For context, Former CTO,

Mike Fisher, has said the ultimate goal

would be to measure learning velocity.

4. Chime and LinkedIn’s Developer CSAT/

NSAT. Chime measures a Developer

Customer Satisfaction (CSAT) score for

every tool and service developers use. This

metric is captured through their quarterly

developer surveys. LinkedIn‘s Developer

NSAT (Net User Satisfaction) measures how

satisfied developers are overall with their

development systems.

10

https://engineering.atspotify.com/2020/08/how-we-use-golden-paths-to-solve-fragmentation-in-our-software-ecosystem/
https://newsletter.pragmaticengineer.com/p/rfcs-and-design-docs
https://getdx.com/podcast/etsy-devex-initiative

These metrics are different in two ways:

first, Chime’s CSAT focuses on specific

tools, whereas LinkedIn’s NSAT measures

developers’ satisfaction with all tools

overall. Also, Chime’s metric is calculated as

a percentage of positive responses,

whereas LinkedIn’s is the percentage of

satisfied responses subtracted by the

percentage of dissatisfied responses.

How to choose your
own metrics
Since we first published this report in 2024,

thousands of engineering leaders have

used it to better understand engineering

productivity metrics.

All the while, DX has been pioneering

research on developer productivity,

partnering with leading companies like

Dropbox, Pfizer, and Twilio, and SiriusXM,

and publishing our findings along the way.

We have consistently found that

engineering leaders face many problems

when trying to implement a metrics

framework: first, they need a framework that

can be implemented in a reasonable

amount of time to quickly establish a

baseline in order to show progress. Second,

they need this framework to be simple

enough to be understood by stakeholders

outside of engineering, but comprehensive

and rigorous enough to be trustworthy.

DX Core 4

Speed Effectiveness Quality Impact

Key metric Diffs per engineer* (PRs
or MRs)
*Not at individual level

Developer Experience
Index (DXI)
Measure of key engineering
performance drivers,
developed

by DX

Change failure rate Percentage of time spent
on new capabilities

Secondary metrics Lead time

Deployment frequency

Perceived rate of delivery

Time to 10th PR

Ease of delivery

Regrettable attrition*
*Only at organizational level

Failed deployment
recovery time

Perceived software
quality

Operational health and
security metrics

Initiative progress and ROI

Revenue per engineer*

R&D as percentage of
revenue*
*Only at organizational level

11

https://newsletter.pragmaticengineer.com/p/measuring-developer-productivity-bae

To help simplify the landscape of metrics

frameworks and address the real-life

challenges from engineering leaders, we’ve

developed a unified framework called the

DX Core 4 that helps organizations and

leaders focus on the metrics that matter

most.

DX Core 4 incorporates metrics from DORA,

SPACE, and the DevEx framework into a

focused set of metrics that work effectively

at any sized organization. As such, this

framework takes the guesswork out of

trying to pick and choose from different

metrics yourself, and instead gives you a

streamlined set of metrics that’s already

proven to be useful at over 300 different

companies.

The DX Core 4 metrics are designed to be

useful at every level—from executive

reporting, to DevProd teams

demonstrating, and to leaders across the

company looking to measure and identify

opportunities to improve software delivery.

For more on the DX Core 4�

� Read the original paper, or DX CEO Abi

Noda’s summar�

� Read how to apply the DX Core �

� Read about how to embed metrics into

team’s decision-making processes, to

enable continuous improvement

12

https://getdx.com/core4
https://getdx.com/research/measuring-developer-productivity-with-the-dx-core-4/
https://newsletter.getdx.com/p/introducing-the-dx-core-4?
https://www.lennysnewsletter.com/p/introducing-core-4-the-best-way-to
https://getdx.com/uploads/operationalizing-developer-productivity-metrics.pdf
https://getdx.com/uploads/operationalizing-developer-productivity-metrics.pdf

Metrics definitions

This is a list of all the metrics that were

surfaced by the companies mentioned in

this article.

Adoption Rate

Adoption rate is a measure of how many

developers actively use a product or

service. Ideally, this is a percentage of the

number of developers using the product out

of the total number of developers that the

product is intended to serve. However,

some teams use simpler metrics: for

example, calculating the total number of

users that have ever used a product. They

may also calculate the total number of users

that have used the product within a given

timeframe, such as within the past month or

quarter.

There are also examples of companies

measuring the adoption of a process, such

as Uber measuring “Design Docs

Generated per Engineer.” Design docs are

written by engineers for non-trivial projects

before they start meaningful work: the idea

is to get feedback early and ultimately

decrease the time taken to complete a

project. Uber’s metric tracks how frequently

developers are following this practice.

Availability

Availability measures the percentage of

time that your infrastructure is operational

and accessible within a given time period.

It’s often used as a metric to report on when

discussing system performance.

Change Failure Rate

One of the four key DORA metrics, change

failure rate is used as a measure of stability.

The DORA team defines change failure rate

as “percentage of changes to production or

releases to users result in degraded service

(for example, lead to service impairment or

service outage) and subsequently require

remediation (for example, require a hotfix,

rollback, fix forward, patch).” The difficult

part of this metric is defining “failure.”

For some real-world examples, Lattice

measures Change Failure Rate as the

number of PagerDuty incidents divided by

the number of deployments.

13

https://newsletter.pragmaticengineer.com/p/rfcs-and-design-docs
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance

Amplitude measures it as the P0s over

production deploys (the P0 count goes

through PagerDuty, and the deploy count is

from Spinnaker). Another way to calculate

Change Failure Rate is to measure the

percentage of deployments that were

hotfixes or rollbacks.

CI Determinism (CID)

CI Determinism is the opposite of test

flakiness: it measures the likelihood of a test

suite’s result being valid, and not a flake.

The benefit of using this metric over Test

Flakiness is that CI Determinism is a

number that’s good when it goes up.

LinkedIn is the only company listed that

includes CI Determinism as a top-level

metric. They use a system that runs CI tests

at specific times every week to track

whether these tests give consistent results

or whether they change from one run to

another. Each test gets a score based on

how often it gets the same result. If a test is

run 10 times and it passes 7 out of those 10

times, its Determinism Score would be 70%.

A higher score is better because it means

the test is more reliable.

When they aggregate the metric, they

average all the Determinism Scores to get

an overall Determinism Score. This way,

codebases that run less frequently but are

still flaky have their flakiness equally

represented in the metric as codebases that

are run frequently.

Code Reviewer Response Time

This measures how long it takes for code

reviewers to respond to each update from a

developer during a code review. Both

LinkedIn and Google subscribe to the belief

that one of the most important qualities of a

code review is that reviewers respond

quickly. This metric measures how quickly

reviewers respond to each update that a

developer posts.

LinkedIn calculates Code Reviewer

Response Time as the time, in business

hours, that it takes between each request

and response. A request is when a reviewer

gets a notification that an author has taken

some action, and now the author is blocked

while waiting for a response. “Response” is

defined as the first time after a request that

a reviewer or code owner responds to the

PR and sends that response to the author.

14

https://linkedin.github.io/dph-framework/why-our-metrics.html
https://linkedin.github.io/dph-framework/why-our-metrics.html

LinkedIn specifically looks at the P50 and

the P90 values.

As a similar metric, Atlassian measures Pull

Request Cycle Time (also known as PR

Creation to Merge Time). Theirs is a

measure of the average time it takes for a

pull request to go from ‘open’ to ‘merged’

over the last ten pull requests. The

difference between Atlassian’s and

LinkedIn’s metric is that Atlassian’s looks at

the full process, whereas LinkedIn is

focused on driving a specific behavior

(faster response times).

Deep Work

Time for Deep Work, or “Focus Time,” is a

measure of the amount of uninterrupted

time developers have at work. Most teams

use surveys to capture variations of this

metric:�

� Developer satisfaction with the amount

of time they have for deep work can be

measured in a survey, with the question:

“How satisfied are you with the amount

of uninterrupted time you have for deep

work?”

� Meeting Heavy Days or the inverse,

Number of Days with Sufficient Focus

Time, can be tracked by asking

developers: “In a typical week, how many

days do you have with more than one

scheduled meeting (not including

standups)?” Response items should

provide a scale of options, such as 0

days, 1 day, 2 days, 3 days, 4 or more

days.�

� Interruption Frequency can be

measured by asking developers: “In a

typical week, how often are you

interrupted from your primary task to

work on something else that was

unplanned or suddenly requested?”

Response items should provide a scale

of options, such as Less than once per

week, At least once per week, At least

once every two days, At least once per

day, At least once every couple of hours.

Deployment Frequency

Deployment Frequency is another one of

the four key DORA metrics: it measures how

often an organization successfully releases

to production. Teams may choose to look at

the frequency of successful deployments

over any given time period (hourly, daily,

15

weekly, monthly, yearly). The challenge with

this metric is defining what constitutes a

successful deployment to production.

DORA’s research looks at successful

deployments to any amount of traffic, but

teams may define a successful deployment

differently (for example, deploying to 50%

or more traffic).

Measuring deployment frequency in a

generic way can be tricky for some

organizations. As an alternative, LinkedIn

shared that they’ve begun to work on a

metric called “Deployment Freshness,”

which measures how old code is in

production. Improving Deployment

Freshness should bring the same value to

the business as improving Deployment

Frequency.

Developer Build Time

Developer Build Time measures how much

time developers spend waiting for their

build tool to complete. This is a common

metric that Developer Productivity teams

focus on because it often represents a big

opportunity to improve developer

productivity. In many companies,

developers spend a significant amount of

their time waiting for builds to complete,

and even small improvements to make

builds faster are beneficial.

LinkedIn defines this as the wall-clock time

from when the build tool starts a “build” to

when it completes. The duration is

measured and reported in seconds.

Critically, LinkedIn only counts this only for

builds invoked by human beings, that we

reasonably assume they are waiting on (this

is notable because other teams have run

into issues by including build times from

robotic builds in their metric). LinkedIn

excludes all builds run on the CI

infrastructure in this metric.

Developer Customer Satisfaction
(CSAT) and Net User Satisfaction
(NSAT)

Developer Satisfaction metrics can capture

how satisfied developers are overall with

their development systems, or how satisfied

they are with specific tools. Satisfaction is

typically captured quarterly in a developer

experience survey. Teams can ask a

question about developers’ overall

satisfaction, and also ask about their

16

https://newsletter.getdx.com/p/build-times-and-developer-productivity
https://getdx.com/podcast/developer-productivity-at-google/

experience using specific tools (CSAT).

Some Developer Productivity teams also

measure Engagement, which can be

captured in a developer survey with the

question “How energized are you by your

work?”. This is a measure of how excited

and stimulated developers feel with their

work. It’s commonly measured in HR

engagement surveys, however DevProd

teams also focus on engagement because it

is an indicator of productivity. Additionally, it

can be used to counterbalance other

measures that emphasize speed. Delivering

software faster is good, but not at the

expense of developer happiness.

Ease of Delivery

Many of the companies included in the

report measure Ease of Delivery, which is a

qualitative measure of how easy or difficult

it is for developers to do their work. This is

frequently used as a “north star metric” for

Developer Productivity teams since their

mission is to make it easier for developers

to do their jobs. Ease of Delivery can be

captured in a quarterly survey using the

question, “How easy or difficult is it for you

to do work as a developer or technical

contributor at [Company]?”

Experiment Velocity (or Learning
Velocity)

Experiment Velocity is a unique metric from

Etsy. At Etsy, experiments are a core aspect

of their engineering culture as a way to

bring teams closer to the customer and

learn quickly. Each team at Etsy designs and

runs its own experiments to assess how

users will respond to new features.

The Experiment Velocity metric was

developed using an in-house

experimentation platform that tracks the

progress of these experiments. Etsy pays

attention to how many experiments are

started each week, how many are stopped,

and how many had a positive hit rate.

Lead Time for Changes

Another one of the four key DORA metrics,

Lead Time for Changes measures the

amount of time between a code change and

the release of this change to end users. This

is a measure of speed.

17

As described by the DORA program, “The

Lead Time for Changes metric requires two

important pieces of data: when the commit

happened, and when the deployment

happened. This means that for every

deployment, you need to maintain a list of

all the changes included in the deployment.

This is easily done by using triggers with a

SHA mapping back to the commits. With

the list of changes in the deploy table, you

can join back to the changes table to get the

timestamps, and then calculate the median

lead time.”

GitLab measures Lead Time for Changes by

calculating the median time it takes for a

merge request to get merged into

production (from master).

Perceived Rate of Delivery

Perceived Rate of Delivery is a measure of

how fast or slow a developer feels their

team delivers software. This is a measure of

speed.

Teams typically use Perceived Rate of

Delivery to understand whether

development teams feel as though they’re

delivering quickly or not. When teams

only rely on quantitative metrics, they often

wonder whether what they’re seeing is good

or bad. Take deployment frequency: this

metric alone doesn’t tell us how difficult it is

for a team to deploy code, or whether a

team feels they’re shipping software quickly.

Perceived Rate of Delivery provides that

data.

Perceived Productivity is another similar

metric used for the same reasons: it

provides the developers’ perspective on

how often they feel productive within a

given week.

Time to Restore Services

Time to Restore Service is another one of

the four key DORA metrics. It measures how

long it takes an organization to recover from

a failure in production. It’s intended to be

used as a measure for stability.

This metric is typically paired with Change

Failure Rate which measures the

percentage of changes that require a

rollback or hotfix. Time to Restore services

will track the time from when the change

(that required a rollback) was released, to

when it was resolved.

18

https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance

Time to 1st and 10th PR

Time to 1st and 10th PR is a measure

Peloton uses to understand the ramp-up

time for new developers. These metrics

aren’t used to evaluate individual

developers, but rather to measure the

impact of improvements to the onboarding

process, which is something their Tech

Enablement & Developer Experience team

has focused on.

Weekly Time loss

Weekly Time Loss calculates the

percentage of time that developers lose due

to obstacles or inefficiencies in their work

environment (for example, slow tools or

processes, unplanned work, unclear tasks).

Similar to Ease of Delivery, this is frequently

used as a “north star metric” by Developer

Productivity teams to track the impact of

their work. For example, if they introduce a

change that brings Weekly Time Loss from

23% down to 20%, that can translate to a

significant impact on the business for a

mid-sized organization or larger.

About DX

DX is an engineering intelligence platform

designed by leading researchers. We give

engineering leaders and platform teams the

data they need to take the right actions to

drive higher ROI per developer. We serve

hundreds of the world’s most iconic

companies including Dropbox, Etsy, Pfizer,

Pinterest, Uber, and P&G.

Learn more at getdx.com.

19

https://getdx.com/

