
EXPERT GUIDE

Designing Developer 
Experience Surveys



Leading technology companies like Google, Microsoft, and Spotify have 
long relied on surveys as a way to measure and understand developer 
productivity. These surveys, which are typically run quarterly or semi-
annually across an organization’s developer population, provide leaders 
and teams with a comprehensive view of the developer experience 
(DevEx).



Surveys are essential for understanding developer productivity because 
basic metrics such as cycle time and throughput do not give us the full 
picture. By asking developers about their tools, processes, codebases, 
and team dynamics, organizations can get a more complete 
understanding of productivity and how to improve. Designing and 
running DevEx surveys isn’t an easy task.



Companies like Google and Shopify staff dedicated teams of 
researchers, engineers, and data scientists that design and analyze their 
surveys. Sustaining high participation rates is a persistent challenge that 
requires careful planning and attention.



This guide provides step-by-step instructions for designing and running 
developer experience surveys in your own organization. We cover 
survey design, launch, and analysis, deriving from our experience 
partnering with hundreds of organizations to design and implement 
DevEx surveys.

2

While this guide focuses on “state of” surveys that are run quarterly or 
semi-annually, it can be helpful to start with the bigger picture of the 
different types of surveys that exist and the types of data that can be 
collected.



This micro-workshop from DX’s CTO, Laura Tacho, gives the full 
landscape and offers advice on how to choose the right option for your 
company.

The Landscape

https://youtu.be/3pa3gwoEb6c


An effective DevEx survey captures data that helps leaders and teams 
understand and improve productivity. Determining what to measure and 
how to capture reliable data can be a lengthy process. In this first 
section of our guide, we cover the key steps involved in survey design. 
Since survey design is critical to collecting reliable metrics and insights, 
we recommend hiring or consulting experts in this area as needed.

Designing Your Survey

To get a holistic picture of the developer experience, leaders should 
include topics that span the full range of activities, tools, and processes 
encountered by developers. The topics may include areas such as code 
quality, automated testing, cross-functional collaboration, and 
psychological safety. Below are three recommended approaches for 
selecting topics:



Review research literature. There is a substantial body of research that 
examines factors that drive developer productivity. This research can be 
helpful in providing initial ideas of topics to focus on. Researchers from 
DX have published several research papers specific to developer 
experience: one identifies 25 top factors affecting developer experience, 
and another provides a practical framework for identifying what to 
measure.



Interview developers. Interviewing developers can provide a basis for 
determining which tools and processes should be touched on in your 
survey. For example, Peloton’s Tech Insights team interviewed over 100 
developers to understand the pain points they faced in their daily work. 
“We pulled this information into a journey map, which we call ‘a day in 
the life of a developer at Peloton,’” says Thansha Sadacharam, who 
leads the Tech Insights team. “This was really helpful for shaping our 
survey.”



Collect ideas from other teams and stakeholders. It’s a good idea to 
reach out to leaders and stakeholders across your organization to gather 
their suggestions for what to cover in your survey. For example, internal 
platform teams may be eager to capture feedback about specific 
internal tools or workflows. Or, front-line managers may be interested in 
getting data about team morale. By incorporating suggestions from 
others, your survey becomes a more valuable asset for your 
organization.

Select topics to measure



To fully understand the developer experience, it’s important to capture 
both developers’ attitudes and opinions as well as more objective 
information about engineering systems and processes. A recent paper 
by DX researchers refers to these distinct types of measures as 
perceptual measures and workflow measures.

To fully understand the developer experience, it’s important to capture 
both developers’ attitudes and opinions as well as more objective 
information about engineering systems and processes. A recent paper 
by DX researchers refers to these distinct types of measures as 
perceptual measures and workflow measures.

Perceptual measures capture developers’ perceptions, attitudes, and 
feelings, which provide insights into areas of friction in the software 
delivery process. In contrast, workflow measures capture objective 
information about system and process performance, giving us clarity 
into what’s happening.



Both sentiment and workflow measures are necessary because neither 
alone can tell the full story. For instance, data on code review workflows 
may indicate a fast process, but in reality, developers may feel frustrated 
from being regularly interrupted by the process. Reliably measuring 
perceptions and workflows requires careful survey design methods, 
which we cover next.

Capture two types of measurements

SURVEY DESIGN

https://queue.acm.org/detail.cfm?id=3595878
https://queue.acm.org/detail.cfm?id=3595878


It’s easy to develop survey questions that yield misleading or unreliable 
results. There are two key qualities that make for good survey questions: 
validity and reliability.



Validity refers to how well the results of a study measure what they are 
intended to measure. Validity includes three components

 Content validity: Do the questions within the survey adequately 
evaluate the target topic? This requires the questions to come from 
research or an otherwise reliable framework which defines the topic. 
If we want to measure developer experience, the survey questions 
should come from a reliable framework defining what developer 
experience is

 Criterion validity: Do measures correlate with other criteria in a way 
that fits theory? For example, code quality has predictive ability with 
perceived productivity, therefore a question related to code quality 
has criterion validity

 Construct validity: Does the item correlate with other measures 
about the same topic? If we measure happiness, an abstract 
concept, we must have confidence that developers with higher 
ratings on the survey question are in fact happier.



Reliability refers to the consistency of a measure, across time and 
people

 Inter-rater reliability refers to whether different respondents give the 
same response for the same question. If you ask two developers on 
the same team about build times and you get very different 
responses, the question is not reliable

 Test-retest reliability refers to whether the same respondent will 
give you the same responses when nothing about their experience or 
attitude has changed. If you ask a developer about the on-call 
experience on Monday, and ask them the same question on 
Wednesday, their response should be the same assuming nothing 
has changed.


Develop reliable survey items

SURVEY DESIGN

5

Long surveys can hamper participation and response quality as 
respondents experience fatigue. For reference, developer surveys at 
companies like Google and Microsoft typically require around 30 minutes 
to complete. Our research, however, shows that keeping surveys under 
15 minutes leads to optimal participation rates over time.

Be mindful of survey length



To reduce your survey length, review questions and ask yourself the 
following

 What decision or action will this inform? If this is unclear or no 
action will be taken, remove the question

 Is this question already addressed by another item? It is common to 
end up with multiple questions that are similar

 Can this question be merged with another and turned into a 
broader question? If the level of detail gained by asking multiple 
questions about a single topic is not necessary, remove the question.


Sampling can improve participation rates by reducing how often 
individual developers take surveys. Sampling is the process of using a 
subset of the population to represent the whole population. For example, 
Google splits their developer population into three cohorts. They send 
their developer survey quarterly, so developers will either take the 
survey once or twice per year.



When utilizing sampling, it’s important to collect sample sizes that are 
large enough to provide results that leaders can use to inform decisions. 
It is also important to make sure that sampled populations are 
representative of your full population by utilizing random sampling 
methods.

Utilize sampling

SURVEY DESIGN

Leaders should carefully plan the survey’s rollout: even perfectly 
designed surveys can fall flat if not well-communicated. With proper 
planning and communication, our research shows that developer 
surveys can achieve and sustain 80%+ participation rates. In this 
section, we will cover the key elements that are part of successful 
survey rollout.

Running Your Survey

The timing and cadence of surveys are important considerations. 
Surveys should ideally be conducted at times where the results can be 
meaningfully acted upon, such as during annual or quarterly planning 
processes. It is also important to be steer clear of overlaps with other 
organizational surveys being conducted, such as those run by HR.

Optimize survey timing



Your survey cadence should stay consistent and be optimized to the 
needs of your organization. Quarterly and semi-annual cadences are 
most common. For example, companies like Google and Dropbox send 
out surveys quarterly, whereas companies like Atlassian and Shopify 
send surveys twice per year.

Strong communication plans ensure that people across your 
organization understand what’s happening with your survey and feel 
encouraged to engage. Communication is beneficial at all points along 
the lifecycle of your survey, but the following should be included, at 
minimum

 One week prior to the survey. Give your organization a heads-up 
about the survey with an explanation of its purpose, how long the 
survey will take to complete, and what individuals should expect 
after

 At the onset of the survey. Announce the survey along with 
instructions on how to complete it. Reiterate the purpose of the 
survey in order to encourage participation

 After the survey. Thank developers for their participation and report 
on the results. Highlight notable findings, surprises, and trends, 
especially those that relate to recent initiatives

 Before the subsequent survey. Share wins and progress made since 
the previous survey in order to encourage participation in the 
upcoming survey.


Create a communication plan

SURVEY ADMINISTRATION

7

Companies typically see survey response rates of anywhere from 30 to 
90%. Several strategies can help boost participation

 Send regular reminders. Friendly reminders can help nudge people 
to complete the survey who may have otherwise forgotten. It’s 
important to be considerate and not overdo reminders, however

 Ask executives to vocalize the importance of participating. 
Developers are more likely to participate in surveys when they feel 
their feedback matters to senior leadership

 Offer incentives or rewards. Some organizations, such as Microsoft, 
motivate developers to participate by offering small incentives such 
as gift cards or company swag.

Encourage participation



SURVEY ADMINISTRATION

Once your survey closes, the next step is to analyze the responses to 
unlock useful insights and learnings from your data. Here, we share 
strategies for analyzing and reporting results.


Taking Action on the Results

To identify where to invest, leaders should analyze survey data with a 
focus on answering the following key questions

 What are the biggest priorities? Score and rank the different areas 
you’ve assessed in order to surface clear suggested priorities

 How do various personas differ? Break down your results by 
dimensions such as role, technical skills, tenure, and location. This 
can yield valuable insights into the unique challenges and needs of 
different personas

 How do perceptions and workflows match up? Look for 
discrepancies between perceptual measures and workflow 
measures. For instance, if developers are satisfied with certain 
processes yet workflow measures show these processes as 
underperforming, this would prompt us to dig in and understand why

 Which issues cross-cut the organization? Which issues are local 
team problems? What issues are uniquely painful for specific teams? 
What issues are felt more broadly across teams? This information will 
guide investments that can be addressed by individual teams, the 
platform team, or with a temporary tiger team

 How does your organization compare to others? Comparing your 
results against industry benchmarks can help contextualize your 
data. For example, developer sentiment toward technical debt is 
near-universally negative. Industry benchmarks can help you 
understand whether sentiment is more or less negative than the 
typical organization

 What has changed since the previous survey? By including the 
same survey items across surveys over time, you can understand 
how developer experience is changing over time. These trends can 
be invaluable for tracking the impact of organizational growth and 
changes.

Analyze the results

Presenting valuable insights to executive leaders is one of the key ways 
to increase support and investment for future surveys. Executive 
briefings should provide a quick overview of highlighted findings, along 
with recommendations or proposals on initiatives that can drive 
improvement.

Present results to leadership



“You have to translate what you’re saying into a language that executives 
can understand, which is typically finance,” says Mike Fisher, former 
CTO at Etsy. At Etsy, leaders use “back of the envelope” calculations to 
explain the potential impact of projects. For example, they would 
highlight the cost of time wasted by inefficient tools or processes, or the 
cost of reducing attrition.



Jim Wang, VP of Internal Developer Experience at GitHub, recommends 
organizing projects into categories that leaders can easily grasp. GitHub 
groups into three categories: developer friction, cutting costs, and 
improvements to the GitHub platform. “Being able to advocate for your 
developer experience initiatives from these perspectives is very 
powerful.”

Executive leaders aren’t the only ones interested in taking action on the 
results. Managers and teams on the front lines can also benefit from 
pinpointing local issues and determining steps they can take to improve.



To enable this, team-specific survey results should be distributed across 
your organization along with guidance on how to utilize their data 
effectively. Instructing teams to choose focus areas and establish 
concrete goals or OKRs can help spark improvement. Leaders can 
further encourage teams by treating developer experience as a priority, 
and celebrating progress that teams are able to make.



Ultimately, developer experience surveys are a critical tool for 
organizations seeking to improve developer productivity. With careful 
design, rollout, and analysis, organizations can gain comprehensive 
insights into areas of friction in order to prioritize projects that drive 
meaningful change.

Developer experience surveys are a critical tool for organizations seeking to improve developer 
productivity. With careful design, rollout, and analysis, organizations can gain comprehensive 
insights into areas of friction in order to prioritize projects that drive meaningful change.

Distribute team-specific results

TAKING ACTION

Get a complete view into what’s impacting developer productivity with DX. 
Learn more here.

© 2024 DX.

https://getdx.com/

