
GUIDE

How to measure GenAI
adoption and impact

GenAI is all the hype right now. From boardrooms to newsrooms, the
narrative centers around the revolutionary impact of GenAI tools such as
GitHub Copilot on developer productivity and efficiency. Recent studies
underscore this sentiment, revealing compelling insights:�

� Developers using Copilot complete tasks 55% faste�
� Copilot reduces review time by an average of 19.3 hour�
� AI-assisted PRs have a 1.57 times higher likelihood of being merged

With these kinds of reports being published by the likes of Microsoft and
Google, it’s no surprise that C-suites at nearly every organization we talk
to are opening up their company’s coffers to purchase and roll out GenAI
tools as fast as possible to their software developers. There’s never been
such a rapid rush around something like this, at least in recent history.

Yet, despite the widespread enthusiasm, there are a lot of challenges as
well. Chief among them is determining the tangible impact of GenAI on
developer productivity. Leaders need this information to validate and
inform their investments. However, developer productivity has always
been a complex problem, and measuring the impact of GenAI is no
different.

Other organizations are seeing suboptimal developer adoption that is
difficult to explain, and are looking to better understand why this is
happening and how to address it. This problem is especially painful for
leaders responsible for rolling out these tools. These people are doing so
without feedback loops or insights into what the best use cases are and
where developers are seeing the biggest gains.

Across these challenges, we see that there’s a common thread: it’s
difficult to get useful feedback, signals, and measurements on how
GenAI is impacting developer productivity. At DX, we’ve been working
with a number of organizations to solve these challenges, and are seeing
promising results. In this article, we will share our learnings on the
different approaches organizations are using, and provide guidance into
how to combine the methods available into a holistic approach that
gives organizations adopting GenAI tools the insights they need.

https://arxiv.org/abs/2302.06590
https://arxiv.org/abs/2402.08967
https://arxiv.org/abs/2402.08967

In the rush to understand and measure the impact of GenAI tools,
organizations are scrambling to collect and analyze developer feedback
and data. But this process is often a big struggle.

Developer adoption of GenAI tools is a key concern, yet we hear from
many leaders that their only sources of insights are basic access reports
and a weekly screenshot of utilization metrics sent to them by their
GitHub account representative (or, this just-released alpha REST API).

To measure the impact of GenAI tools, telemetry-based productivity
metrics like pull request count are of heavy interest right now. But for
many organizations, these metrics aren’t telling a compelling story (and
in many cases, not showing any changes at all), worrying and
confounding leaders.

Some organizations have launched efforts to collect data through
surveys, but struggle with survey design and collecting enough
responses to produce reliable baselines. Experience sampling – the least
familiar of the methods – holds a lot of promise, but putting it into
practice can be challenging, as we’ll discuss later.

At DX, we’ve witnessed many of the benefits and challenges of these
different approaches, and find that many organizations’ challenges stem
from the misapplication or misunderstanding of how to properly utilize
each method. Telemetry metrics, experience sampling, and surveys can
all provide leaders with rich and useful data. Deploying each method
successfully is the challenge.

How organizations are collecting feedback and data today

https://docs.github.com/en/enterprise-cloud@latest/early-access/copilot/copilot-usage-api

Understanding and measuring developer productivity has always been a
difficult problem. But add GenAI into the mix and it’s gotten even harder.
Thankfully, this problem is solvable, but only when organizations adopt a
mixed-methods approach.

In this section, we’ll outline the three different methods for measuring
and collecting data on GenAI utilization and impact. We’ll tell you where
each approach shines, how it can be utilized, and the common pitfalls
we see organizations running into. Then in the next section, we’ll show
you how to combine the different approaches together into a holistic
insights strategy.

Three approaches to measurement and insights

The first place that many organizations look to for data on the
productivity impact of GenAI is telemetry metrics from tools like GitHub.
Common metrics used to track productivity include pull requests per
developer, code review time, and cycle time. Some organizations
counterbalance these measures with metrics like number of incidents, to
ensure that GenAI-fueled speed increases don’t come at the cost of
quality.

Telemetry metrics are a useful way to get a high-level gauge of how
developer output and activity levels are being affected by GenAI. Many
organizations observe small but noticeable increases in their metrics,
ranging from 5-10%. Other organizations, however, see little or no
change in the numbers at all, leaving leaders concerned about the large
investments they’re making in GenAI.

The challenge we’ve seen many leaders run into with telemetry metrics
is that these metrics often don’t tell a clear or compelling story on their
own. There’s skepticism around whether GenAI tools are the direct driver
of fluctuations in developer activity levels. And these metrics alone don’t
provide a concrete picture of how GenAI tools are being utilized to
realize the benefits.

Telemetry metrics can’t answer some important questions like: How
much of developers’ time is actually being saved thanks to GenAI tools?
How are developers using these tools? What are the most beneficial use
cases for GenAI tools that can be taught to the rest of the developers?

Telemetry metrics

Experience sampling is not quite as familiar as the other methods we’re
discussing. In technical terms, experience sampling refers to a set of
data collection methods for gathering systematic self-reports of
behaviors or experiences as they occur in the individual’s natural
environment.

Applied to developer productivity and GenAI: experience sampling
involves taking a continuous random sample of developers as they
complete tasks, and surveying or interviewing them in real-time to
understand how they’re using GenAI tools and what benefits they’ve
realized.

Experience sampling is a powerful data collection method that can
provide your organization with two key insights that are difficult to obtain
otherwise.

The first insight is around concrete time savings or ROI, which is a critical
question that’s otherwise difficult to answer. Telemetry metrics and
traditional surveys can only provide high-level numbers, whereas
experience sampling can tell you exactly how many minutes or hours
were saved on specific development tasks thanks to GenAI, from which
organizations can extrapolate total estimated ROI in terms of time and
dollars.

Experience sampling

The second key insight gained through experience sampling is how
exactly developers are using GenAI tools to positive effect. This is key
for driving adoption: early adopters in your organization are likely to be
self-driven and discover use cases, but for everyone else, simply
dropping a tool like GitHub Copilot on them isn’t going to lead to
adoption or positive results. To achieve successful adoption,
organizations must provide guidance around practical and beneficial use
cases, as well as proactively identify gaps and opportunities for further
tooling improvements.

Experience sampling comes with great reward, but is also the most
challenging of the discussed methods to implement. If not using a tool
that’s built for this such as PlatformX, we’ve seen organizations build
sophisticated tooling to deploy event-sampled data collection
campaigns, and the required duration for these studies can be a point of
friction for organizations that want complete answers immediately.

Surveys are a powerful tool for capturing measurements and feedback
about GenAI. In particular, surveys are highly useful for measuring
developer adoption, satisfaction, and self-reported productivity.

Most organizations, for example, don’t have individual-level telemetry
data on how regularly developers’ are utilizing GenAI tools for specific
types of tasks. Periodic surveys where developers are directly asked
questions about their level of utilization for different types of tasks can
provide fast and reliable data points.

Similarly, while telemetry metrics provide one lens into developer
productivity, self-reported measures of satisfaction and productivity can
tell a different side of the story on the positive benefits of GenAI in your
organization (for example: we’ve seen GenAI have direct measurable
benefits on developer fulfillment and ease of completing development
tasks).

The difficulties we see organizations face when it comes to surveying
aren’t a surprise. Designing proper surveys is always a challenge,
especially under the time pressures many leaders face to collect data.
The periodic nature of surveys means that timing is important, and high-
enough participation rates are required in order for reliable insights to be
drawn from responses.

Surveys

https://getdx.com/products/platformx/

We’ve outlined three methods of data collection and insights, and
discussed how each can provide unique insights. Telemetry metrics are
primarily useful for quantifying the impact of GenAI on developer output.
Experience sampling is most useful for quantifying the ROI of these tools
and their specific use cases. Surveys are best for measuring adoption
and satisfaction with these tools, and developers’ self-reported
productivity as a result of using them.

Organizations can get the most success by applying all three methods
together to get the fullest insights into how GenAI is being used by
developers, and how it’s impacting productivity.

Organizations should deploy surveys as soon as possible to establish
baselines early, before GenAI tools have been fully rolled out. Running
these surveys regularly, about every six to twelve weeks, helps track
changes in developer adoption and satisfaction.

At the same time, organizations should keep an eye on their telemetry
metrics to spot any changes or trends in developer productivity levels as
GenAI tools are adopted. It’s important to dedicate effort to properly
cleaning and normalizing data to ensure that you’re getting reliable
signals.

Putting it all together

Lastly, we strongly recommend that organizations run experience
sampling studies in focused, four-week intervals. These studies can
yield powerful data on the dollar-value ROI of GenAI tools, along with
close-up insights into how developers are using GenAI to realize their
productivity gains. These learnings can be shared back with other
developers and internal platform teams, helping make clear the best use
cases for GenAI as well as gaps and opportunities.

GenAI represents a significant opportunity to boost developer
productivity and job satisfaction. Effective collection of developer
metrics and feedback is key to optimally rolling out and realizing the full
impact of these tools.

As discussed, data can be used to better understand and drive
adoption, as well as validate the financial ROI of productivity gains being
captured. Insights on specific GenAI use cases can help with educating
developers across your organization on how to best apply these tools.

The earlier organizations can establish baselines and put data
mechanisms in place, the better: this provides a longitudinal view of how
GenAI impacts your business over time.

Final thoughts

Learn how DX can help you implement the measurement approaches
described in this guide.

© 2024 DX.

https://getdx.com/demo/

